

LNPTM THERMOCOMPTM COMPOUND LF002

LF-1002 REGION AMERICAS

DESCRIPTION

LNP THERMOCOMP LF002 compound is based on Polyetheretherketone (PEEK) resin containing 10% glass fiber.

GENERAL INFORMATION	
Features	High stiffness/Strength, High temperature resistance, No PFAS intentionally added
Fillers	Glass Fiber
Polymer Types	Polyetheretherketone (PEEK)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Consumer	Commercial Appliance
Electrical and Electronics	Electronic Components, Mobile Phone - Computer - Tablets
Industrial	Electrical, Material Handling

TYPICAL PROPERTY VALUES

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
(1)			
MECHANICAL (1)			
Tensile Stress, yld, Type I, 5 mm/min	120	MPa	ASTM D638
Tensile Stress, brk, Type I, 5 mm/min	114	MPa	ASTM D638
Tensile Strain, yld, Type I, 5 mm/min	3.3	%	ASTM D638
Tensile Strain, brk, Type I, 5 mm/min	4.2	%	ASTM D638
Tensile Modulus, 5 mm/min	6080	MPa	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	203	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	6010	MPa	ASTM D790
Tensile Stress, yield, 5 mm/min	125	MPa	ISO 527
Tensile Stress, break, 5 mm/min	122	MPa	ISO 527
Tensile Strain, yield, 5 mm/min	3.4	%	ISO 527
Tensile Strain, break, 5 mm/min	4	%	ISO 527
Tensile Modulus, 1 mm/min	6490	MPa	ISO 527
Flexural Modulus, 2 mm/min	5660	MPa	ISO 178
IMPACT (1)			
Izod Impact, unnotched, 23°C	860	J/m	ASTM D4812
Izod Impact, notched, 23°C	58	J/m	ASTM D256
Multiaxial Impact	2	J	ISO 6603
Instrumented Dart Impact Total Energy, 23°C	8	J	ASTM D3763
Izod Impact, unnotched 80*10*4 +23°C	49	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*4 +23°C	4	kJ/m²	ISO 180/1A
THERMAL (1)			
TTERWINE			

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
HDT, 0.45 MPa, 3.2 mm, unannealed	326	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	169	°C	ASTM D648
CTE, -30°C to 30°C, flow	3.5E-05	1/°C	ASTM D696
CTE, -30°C to 30°C, xflow	4.4E-05	1/°C	ASTM D696
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	285	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	171	°C	ISO 75/Af
PHYSICAL (1)			
Density	1.37	g/cm³	ASTM D792
Moisture Absorption, (23°C/50% RH/24 hrs)	0.07	%	ASTM D570
Mold Shrinkage, flow, 24 hrs (2)	0.3 – 0.6	%	ASTM D955
Mold Shrinkage, xflow, 24 hrs ⁽²⁾	0.5 – 0.8	%	ASTM D955
Density	1.37	g/cm³	ISO 1183
Moisture Absorption (23°C / 50% RH)	0.12	%	ISO 62
INJECTION MOLDING (3)			
Drying Temperature	150	°C	
Drying Time	4 – 6	Hrs	
Front - Zone 3 Temperature	380 – 400	°C	
Middle - Zone 2 Temperature	380 – 400	°C	
Rear - Zone 1 Temperature	370 – 380	°C	
Mold Temperature	175 – 190	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw Speed	60 – 100	rpm	

⁽¹⁾ The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

⁽²⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

⁽³⁾ Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.